155TG1 Teoretická geodézie 1 / úloha 3

Z GeoWikiCZ
< 155TG1 Teoretická geodézie 1
Verze z 5. 11. 2014, 02:08, kterou vytvořil Holesovsky (diskuse | příspěvky) (založení stránky)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)
Skočit na navigaci Skočit na vyhledávání

Název úlohy

Geodetická křivka v konformním zobrazení

Zadání úlohy

Známy jsou 2 body A, B na území ČR. Body A a B jsou dány svými zeměpisnými souřadnicemi , na Besselově elipsoidu. Ze zobrazovacích rovnic Křovákova zobrazení znáte pro body A, B také jejich zeměpisné souřadnice U, V na kouli, kartografické souřadnice Š, D na kouli, rovinné polární souřadnice R, a kartézské souřadnice X, Y v rovině Křovákova zobrazení. Dále znáte 2 "měřené" úhly a na bodech A a B. Vaším úkolem je:

  1. Vypočtěte směrové korekce pro všechny strany trojúhelníka ABC, kde bod C leží na průsečíku levého ramene úhlu a pravého ramene úhlu . Směrové korekce zkontrolujte pomocí sférického excesu.
  2. Z redukovaných úhlů vypočítejte protínáním z úhlů souřadnice bodu C v rovině Křovákova zobrazení.
  3. Pomocí meridiánové konvergence, směrníku a směrových korekcí vypočítejte azimut geodetické křivky mezi body A a B (v obou koncových bodech).
  4. Vypočtěte měřítko zobrazení pro významné body spojnice AB (koncové body a středový bod spojnice) a z něj vypočítejte délku geodetické křivky na elipsoidu.

Body 1 a 2 je potřeba řešit iterativním postupem současně. Pomocí bodů 3 a 4 počítáte veličiny (azimuty a vzdálenost bodů) na elipsoidu, ale jednoduchým způsobem z rovinných souřadnic bodů v rovině Křovákova zobrazení.

Numerické zadání

Numerické zadání se souřadnicemi bodů A, B v jednotlivých souřadnicových systémech Křovákova zobrazení a s měřenými úhly a naleznete v adresáři ftp://athena.fsv.cvut.cz/TG1/smerkorekce/zadani v souboru tg1_2014_u3_xx.m, kde xx je číslo zadání. Číslo zadání studenta odpovídá číslování uvedenému na stránkách cvičení TG1.

Dokumenty ke stažení

Poznámky ke křivosti obrazu geodetické křivky.

Skript xy2sd.m pro převod rovinných souřadnic X,Y na kartografické souřadnice Š,D na sféře. Budete jej potřebovat do výpočtu směrových korekcí obou ramen trojúhelníka přilehlých k vrcholu C, kde je nutno kromě rovinných souřadnic X,Y bodu C znát také jeho polární souřadnice R, v rovině a kartografické souřadnice Š,D na kouli.